Descending vasa recta endothelial cells and pericytes form mural syncytia.

نویسندگان

  • Zhong Zhang
  • Hai Lin
  • Chunhua Cao
  • Kristie Payne
  • Thomas L Pallone
چکیده

Using patch clamp, we induced depolarization of descending vasa recta (DVR) pericytes or endothelia and tested whether it was conducted to distant cells. Membrane potential was measured with the fluorescent voltage dye di-8-ANEPPS or with a second patch-clamp electrode. Depolarization of an endothelial cell induced responses in other endothelia within a millisecond and was slowed by gap junction blockade with heptanol. Endothelial response to pericyte depolarization was poor, implying high-resistance myo-endothelial coupling. In contrast, dual patch clamp of neighboring pericytes revealed syncytial coupling. At high sampling rate, the spread of depolarization between pericytes and endothelia occurred in 9 ± 2 or 12 ± 2 μs, respectively. Heptanol (2 mM) increased the overall input resistance of the pericyte layer to current flow and prevented transmission of depolarization between neighboring cells. The fluorescent tracer Lucifer yellow (LY), when introduced through ruptured patches, spread between neighboring endothelia in 1 to 7 s, depending on location of the flanking cell. LY diffused to endothelial cells on the ipsilateral but not contralateral side of the DVR wall and minimally between pericytes. We conclude that both DVR pericytes and endothelia are part of individual syncytia. The rate of conduction of membrane potential exceeds that for diffusion of hydrophilic molecules by orders of magnitude. Gap junction coupling of adjacent endothelial cells may be spatially oriented to favor longitudinal transmission along the DVR axis.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Descending vasa recta endothelium is an electrical syncytium.

We examined gap junction coupling of descending vasa recta (DVR). DVR endothelial cells or pericytes were depolarized to record the associated capacitance transients. Virtually all endothelia and some pericytes exhibited prolonged transients lasting 10-30 ms. Carbenoxolone (100 microM) and 18beta-glycyrrhetinic acid (18betaGRA; 100 microM) markedly shortened the endothelial transients. Carbenox...

متن کامل

Syncytial communication in descending vasa recta includes myoendothelial coupling.

Using dual cell patch-clamp recording, we examined pericyte, endothelial, and myoendothelial cell-to-cell communication in descending vasa recta. Graded current injections into pericytes or endothelia yielded input resistances of 220 ± 21 and 128 ± 20 MΩ, respectively (P < 0.05). Injection of positive or negative current into an endothelial cell depolarized and hyperpolarized adjacent endotheli...

متن کامل

Descending vasa recta endothelia express inward rectifier potassium channels.

Descending vasa recta (DVR) are capillary-sized microvessels that supply blood flow to the renal medulla. They are composed of contractile pericytes and endothelial cells. In this study, we used the whole cell patch-clamp method to determine whether inward rectifier potassium channels (K(IR)) exist in the endothelia, affect membrane potential, and modulate intracellular Ca(2+) concentration ([C...

متن کامل

Special Communication Ca signaling and membrane potential in descending vasa recta pericytes and endothelia

Rhinehart, Kristie, Zhong Zhang, and Thomas L. Pallone. Ca2 signaling and membrane potential in descending vasa recta pericytes and endothelia. Am J Physiol Renal Physiol 283: F852–F860, 2002. First published April 23, 2002; 10.1152/ajprenal.00065.2002.—We devised a method for removal of pericytes from isolated descending vasa recta (DVR). After enzymatic digestion, aspiration of a descending v...

متن کامل

Sympathetic nerve-derived ATP regulates renal medullary vasa recta diameter via pericyte cells: a role for regulating medullary blood flow?

Pericyte cells are now known to be a novel locus of blood flow control, being able to regulate capillary diameter via their unique morphology and expression of contractile proteins. We have previously shown that exogenous ATP causes constriction of vasa recta via renal pericytes, acting at a variety of membrane bound P2 receptors on descending vasa recta (DVR), and therefore may be able to regu...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • American journal of physiology. Renal physiology

دوره 306 7  شماره 

صفحات  -

تاریخ انتشار 2014